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Abstract 

Barium strontium titanium oxide (BSTO) ferroelectric films of various nominal thicknesses 
were deposited by the pulsed laser deposition (PLD) technique on single crystals of sapphire at 
substrate temperatures varying from 30° C to 700° C. X-ray analysis showed that the thin films 
were amorphous up to 500° C, while at 700° C, they were polycrystalline. The microstructure 
of the thin films was columnar at all substrate temperatures. The film microhardness increased 
with increasing substrate temperature. While the cohesion failure load of the films remained 
fairly constant, the adhesion failure load increased with increasing substrate temperature. 
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1. Introduction 

The concept of electronic thin film deposition at lower temperatures is desirable because it 

enables the integration of several device fabrication steps. However, the inherent material properties 

required for any application have to be maintained at the lower deposition temperatures. In the case 

of electronic thin films used for tunable dielectric applications, these properties include dielectric 

constant, voltage tunability, and the electronic loss tangent. However, the mechanical integrity of 

the thin film (i.e., the adhesion and cohesion) is just as important. 

It is well known that the substrate temperature Ts, the ambient gas pressure, and the energy of 

any incoming ions influence the growth conditions and, therefore, the film structure produced under 

low-pressure conditions (Movchan and Demchishin 1969; Thornton 1977; Fountzoulas and Nowak 

1991). A structural classification system that has gained the broad acceptance for thin films 

produced by the physical vapor deposition (PVD) process has been presented by Movchan and 

Demchishin (1969). They proposed three zones to describe the microstructures that can develop in 

deposits produced by vacuum evaporation as a function of Ts /Tm, where Ts is the absolute substrate 

temperature and Tm is the absolute melting temperature of the deposited material. Thornton (1977) 

elaborated on the approach of Movchan and Demchishin, extending it to typical sputtering 

conditions. Thornton also concluded that the structure and physical properties of films produced by 

sputtering could be represented as a function of Ts /Tm, in terms of four zones as shown in Figure 1, 

each with its own characteristic structure and physical properties. The general features of Thornton's 

model were based on the examination of 25- to 250-pm-thick coatings deposited at argon pressures 

1.33 x 10-4 (1 mTorr) to 3.9 x 10"3 Pa (30 mTorr) using cylindrical-post and hollow cathode 

magnetron sputtering sources. Fountzoulas and Nowak (1991) further elaborated on the approach 

of Movchan and Thornton, extending it to ion plating. 

We have initiated an investigation of the cohesive and adhesive properties of dielectric thin films 

of barium strontium titanium oxide (BSTO) deposited on single crystal substrates by the pulsed laser 

deposition (PLD) method (Sengupta et al. 1996; Brennan 1992; Lee, Ramesh, and Keramidas 1995). 
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Figure 1. Thornton's Structure Zone Model for Coatings Produced by Sputtering 
(Thornton 1977). 

This report presents the initial results of this study of these mechanical properties of BSTO thin films 

as a function of deposition temperature. 

2. Experimental Procedure 

In this work, thin films of BSTO were deposited by the PID technique on single crystal sapphire 

substrates at room temperatures varying from 30° C to 700° C. The details of this deposition 

technique are given in Sengupta and Green (1998). 

The fracture cross sections of the films were observed by scanning electron microscopy (SEM). 

Crystallinity, crystal orientation, and composition of the films were determined by FT-RAMAN 

spectroscopy and glancing angle x-ray diffraction (GAXRD). The adhesive and cohesive failure 



loads of the films were evaluated with the aid of a CSEM-Revetest instrument (Centre Suisse 

d' Electronique et de Microtechnique, CSEM, CH-20007, Neuchätel, Switzerland). 

In the specimen evaluation, the material properties of the BSTO thin films deposited at various 

substrate temperatures were evaluated by FT-Raman spectroscopy (Sengupta and Green 1998). 

The Knoop microhardness of the coatings, unconnected for substrate hardness effects, was 

measured using a 0.25-N applied load and a dwell time of 15 s. Even at this low load, the maximum 

indenter penetration far exceeded the critical value of 1/10 of the coating thickness considered 

sufficient for the substrate not to have a significant effect on hardness values. 

The cohesion and adhesion values of the various coatings were evaluated primarily with a 

CSEM-Revetest automatic scratch apparatus. This apparatus, with a diamond stylus radius of 

20 urn, and the testing procedure are described in Kattamis et al. (1993); Bhansali and Kattamis 

(1990); Kattamis (1993); and Steinmann, Tardy, and Hintermann (1987). The sample translation 

speed was held constant at 5 mm/min, and the loading rate at 5 N/min; hence, the load gradient was 

dL/dx «= 1 N/mm. The cohesion failure load (Lc) is the minimum crack initiation load within the 

coating, and the adhesion failure load (LA) is the minimum load at which the crack causes massive 

delamination at the coating/substrate interface. 

3. Results and Discussion 

3.1 SEM Analysis. The microstructure of the BSTO thin film, at various substrate 

temperatures, was evaluated by SEM photomicrographs (Figure 2). It became apparent from the 

SEM photomicrographs that the Thornton structural zone 1 (Thornton 1977) was not observed. Our 

films can be classified in the Thornton transition (T) and structural zone 2. The column size 

measurements as a function of the ratio of the absolute substrate temperature (Ts) and absolute film 

melting temperature (Tm) (2,004 K) are shown in Table 1 and Figure 3. For Ts /Tm between 0.15 and 

0.19, the average column size increased from 190 nm to 230 ran. For Ts /Tm between 0.19 and 0.39, 



Figure 2. SEM Photomicrograph of Fracture Cross Section of a BSTO Film (Ts/Tm= 0.15). 

Table 1. Column Size, Cohesion and Adhesion Failure Load, and Knoop Microhardness of 
BSTO Films vs. Ts/Tm 

Lc LA Knoop 
T /T Thickness Column Size (Cohesion Load) (Adhesion Load) Microhardness 

(nm) (nm) (N) (N) (GPa) 

0.15 1,000 190 11.63 16.06 1.3 
0.19 2,200 230 13.75 18.75 1.5 
0.29 1,000 250 13.65 38.22 5.7 
0.39 1,000 220 12.96 22.68 6.6 
0.49 3,000 2,007 12.32 24.08 7.0 
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Figure 3. Column Size of BSTO Films vs. Ts / Tm. 

the average column size remains practically constant. At Ts /Tm - 0.49, where the film is fully 

crystalline, the column size increases dramatically to 2,007 nm. 

3.2 Microhardness. The Knoop microhardness of the BSTO films, uncorrected for the 

substrate hardness effect, ranged between 1.3 GPa and 7 GPa. Table 1 and Figure 4 show Knoop 

microhardness values as a function of Ts /Tm. The film microhardness increased with increasing 

Ts / Tm ratio and increasing film crystallinity. The highest Knoop microhardness was obtained at the 

highest temperature (Ts /Tm = 0.49). 

33 Cohesion and Adhesion Failure Load. Measured average values of cohesion failure load 

(L c) and adhesion failure load (L A) are listed in Table 1. The cohesion failure load of the films 

remained fairly constant, independent of the substrate temperature (Figure 5). The average cohesion 

failure load of the film was about 13 N. The adhesion failure load of the films increased with 
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Figure 4. Knoop Microhardness of BSTO Films vs. T, / Tn 
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Figure 5. Cohesion Failure Load of BSTO Films vs. Tg / Tm. 
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increasing Ts /Tm ratio (Figure 6). However, for reasons currently not understood, for Ts /Tm = 0.25, 

the adhesion failure load exhibited a peak at a ratio of 0.29. 

0       0.15     0.19     029     0.39     0.49 

T8/Tm 

Figure 6. Adhesion Failure Load of BSTO Films vs. T. / Tn 

4. Conclusions 

The structure, crystallinity, cohesion and adhesion failure loads, and microhardness of BSTO thin 

films produced by PLD were correlated with the substrate temperature. For the entire temperature 

range, 278-973 K, the films were columnar and the column size increased with increasing substrate 

temperature. For Ts/Tm <; 0.29, they could be categorized as being in the transition (T) Thornton 

structural zone, while for Ts/Tm > 0.29, they corresponded to the Thornton structural zone 2 category. 

The film was amorphous up to 373 K, partially crystalline from 573 to 973 K, and fully crystalline 

at 973 K. The cohesion failure load was constant for the entire substrate temperature range. The 



adhesion failure load and microhardness increased with increasing thin film crystallinity and 

substrate temperature. 

5. Future Plans 

The microstructure evolution of the BSTO films as a function of the substrate temperature, laser 

pulse energy, and oxygen pressure will be further studied in order to construct a more comprehensive 

structure zone model for PLD BSTO films produced by the technique. 
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